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Nonlinear stability of mixed convection flow
under non-Boussinesq conditions.
Part 1. Analysis and bifurcations
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(Received 10 January 1998 and in revised form 26 May 1999)

The weakly nonlinear theory for modelling flows away from the bifurcation point de-
veloped by the authors in their previous work (Suslov & Paolucci 1997) is generalized
for flows of variable-density fluids in open systems. It is shown that special treatment
of the continuity equation is necessary to perform the analysis of such flows and
to account for the potential total fluid mass variation in the domain. The stability
analysis of non-Boussinesq mixed convection flow of air in a vertical channel is then
performed for a wide range of temperature differences between the walls, and Grashof
and Reynolds numbers. A cubic Landau equation, which governs the evolution of
a disturbance amplitude, is derived and used to identify regions of subcritical and
supercritical bifurcations to periodic flows. Equilibrium disturbance amplitudes are
computed for regions of supercritical bifurcations.

1. Introduction
The mixed convection flows considered in this paper typically exist in such tech-

nical applications as chemical vapour deposition reactors, heat exchangers, thermal
insulation systems and others. In many of these applications, the characteristic tem-
perature difference is comparable with the average temperature of the fluid and the
temperature gradients are sufficiently large to cause essential fluid property varia-
tions (Chenoweth & Paolucci 1985, 1986; Suslov & Paolucci 1995b) which cannot be
neglected. Quantitative predictions of flow characteristics such as heat transfer rate
or mass flux through these systems is a non-trivial task (Suslov & Paolucci 1995a, b,
1997). Indeed, when the properties of a fluid are allowed to vary with temperature and
pressure, the momentum and energy equations, which are used to describe the flow
of the fluid, become substantially more complicated due to additional nonlinearities
arising from density, viscosity, thermal conductivity and specific heat variations. The
property variations lead to the appearance of additional governing parameters in the
problem. Thus the cost of direct numerical simulations of such flows for all regimes
of interest is prohibitively increased. For this reason we have undertaken to study
the character of such flows as a function of the important dimensionless parameters
using weakly nonlinear analysis.

In our earlier works (Suslov & Paolucci 1995a, b) we successfully used the low-
Mach-number approximation of the Navier–Stokes equations, instead of the Boussi-
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nesq model, to account for the fluid properties variations and analyse the linear
stability of the conduction state in a vertical cavity and open channel. It was shown
that the stability characteristics such as the critical Grashof number and the distur-
bance wave speed depend strongly on the temperature difference when fluid properties
are allowed to vary. Moreover, the large density variations, caused by a large tem-
perature difference between the walls, can lead to the appearance of a new buoyant
instability which competes with the shear-driven one predicted by the linear analysis
of Boussinesq flows.

Linear theory is a universal and powerful technique used to find the location
of bifurcations in parameter space, as well as to predict the form of developing
disturbances. Unfortunately, one cannot obtain the amplitudes of such disturbances
using linear theory and, consequently, provide any quantitative information about a
disturbed flow. Thus, it is necessary to consider nonlinearities in order to close the
problem. Weakly nonlinear theories developed to date (Stuart 1960; Watson 1960;
Stewartson & Stuart 1971), and their modifications (Reynolds & Potter 1967; Sen &
Venkateswarlu 1983), have been shown to be very powerful tools for the analysis of
stability of various flows. The term ‘weakly’ is used in the application of nonlinear
theories to emphasize that such theories use certain expansion procedures and require
the presence of some ‘small parameter’, the powers of which are used to construct
recursively systems of relatively simple (linear) equations whose solutions constitute
the terms of asymptotic series. These time-dependent series, if convergent, represent
developing disturbances superposed on the primary flow. The choice of a small
expansion parameter varies from one approach to another: linear amplification rate,
relative distance from the marginal stability surface in the governing parameter space,
and the disturbance amplitude itself. Although in the vicinity of a bifurcation point all
these approaches lead to similar results, the ranges of convergence of the asymptotic
series (and of validity of the analysis) depend strongly on the choice of the expansion
(Yao & Rogers 1992). Moreover, the relative distance from the neutral stability curve
cannot be used as a small parameter when linear analysis shows that the basic flow
is always stable and no neutral surface exists, such as in plane Couette or pipe
Poiseuille flows. The same restriction applies when the linear amplification rate is
assumed small, since this would be so only close to the marginal stability surface. The
most natural and general approach seems to be when expansions are made based on
a small disturbance amplitude assumption. Since disturbance amplitudes can possibly
remain small for relatively large distances from the bifurcation point, such a technique
could potentially remain valid for larger parameter ranges and it can be applied even
to flows for which marginal surfaces do not exist (Davey & Nguyen 1971). The
validity of the small-amplitude assumption has to be checked a posteriori when
nonlinear equilibrium states are formally computed. The application of an amplitude
expansion (Watson 1960) is typically done in conjunction with a multiple-timescale
technique where the fast timescale corresponds to the exponential disturbance time
development as predicted by linear analysis. Slower timescales correspond to stages
when the growth or decay of the disturbances is influenced by nonlinearities of
different orders. Frequently, it is argued that the introduction of multiple timescales
is reasonable only when linear disturbances change slowly with time, i.e. when their
linear amplification or decay rates are small, since in this case the linear development
stage is sufficiently long. We should note here that the length of the linear stage
is not a factor defining the validity of the introduction of multiple timescales. The
multiple-timescale approach is valid no matter how large the linear amplification rate
is, provided that the amplitude dynamics changes substantially as the disturbance
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develops. This is always the case if an equilibrium state exists. Then the fast timescale
corresponds to the amplitude dynamics away from saturation, while slow scales are
introduced for nearly equilibrium regimes.

After amplitude and multiple-timescale expansions are made, separation of dif-
ferent orders in amplitude leads to successive sets of linear equations. An integral
solvability condition must be satisfied in order to find a solution close to the marginal
stability surface (Stewartson & Stuart 1971; Stuart 1960; Watson 1960). This ap-
proach is used to find the value of the constant entering the Landau equation which
describes the time-dependent behaviour of the disturbance amplitude. The value of
the Landau constant typically is found using appropriate integrals of the eigenfunc-
tions computed at the critical point. This automatically limits the applicability of
nonlinear theories to a close vicinity of the bifurcation point. On other hand the
eigenfunctions of the linearized problem and their integrals can be computed at an
arbitrary point in parameter space regardless of the actual location of the criticality.
This suggests using them to determine the Landau constant for an arbitrary set of
governing parameters. Unfortunately, this approach faces an inherent difficulty. As
was first noted by Herbert (1983), the equations at third order in amplitude become
unconditionally solvable when the linear amplification rate is not equal to zero. Thus
the application of a solvability condition for the evaluation of the Landau constant
becomes meaningless. In order to avoid this difficulty in determining the Landau
constant, Herbert proposed fixing the disturbance at some particular spatial point
such that it is determined completely by the eigenfunction of the linear problem. We
have shown in Suslov & Paolucci (1997) that this procedure leads to an inconsistency
in the definition of the equilibrium disturbance amplitude and, subsequently, we have
proposed replacing the solvability condition with an appropriate orthogonality condi-
tion when analysing supercritical or subcritical flows. The idea of orthogonalizing the
solutions of successive systems of equations resulting from weakly nonlinear analysis
can be found in Sen & Venkateswarlu (1983), but in Suslov & Paolucci (1997) it was
shown rigorously that it is not only desirable, but also necessary. Thus the theory we
developed in Suslov & Paolucci (1997) does not require amplitude expansions to be
based on the eigenfunctions of the linearized problem computed at the critical point,
but rather at a particular point of interest in the parameter space. Consequently, a
typical limitation of weakly nonlinear theories to the relatively small neighbourhood
of the bifurcation point is relaxed such that, presumably, our approach remains valid
for larger distances from criticality.

There are two major differences between Boussinesq and non-Boussinesq flows in
the light of the weakly nonlinear analysis. First, in the Boussinesq limit, where fluid
properties are assumed to be constant, the governing equations have a quadratic
nonlinearity. However, in non-Boussinesq regimes the nonlinear character of the
equations is largely governed by the form of the constitutive equations for the fluid,
and in general it is not even of polynomial character. This is the case, for example,
when the well-known Sutherland formulae are used to describe viscosity and thermal
conductivity variations with temperature. Recently, the present authors extended the
application of Watson’s (1960) theory to the stability of the flow of a general fluid
(Suslov & Paolucci 1997). The form of the expansion was rigorously derived based on
Taylor expansions of properties about the reference distributions. This enabled us to
examine successfully the stability of non-Boussinesq natural convection in a vertical
cavity subjected to large temperature differences (Suslov & Paolucci 1997) and to
predict mean flow characteristics and disturbance amplitudes at substantial distances
from the critical points.
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Second, in contrast to the Boussinesq case, under non-Boussinesq conditions the
density of the fluid can change with time. This means that in general the total mass of
the fluid in an open system changes. Such a situation requires a special treatment in
the weakly nonlinear analysis, which to the authors’ knowledge has not been discussed
properly in the literature to date. In the present paper an important modification
of the continuity equation valid for low-Mach-number flows is proposed in order to
extend our previously derived theory to flows in open geometries. In this case the
total mass of the fluid can vary because of disturbance development. This total mass
change affects the mean flow of the fluid and, consequently, the average characteristics
of the flow which are of primary interest to engineers.

The amplitude expansion method has been used successfully for supercritical flows.
Severe difficulties arise though in applying it in subcritical regimes where the linear
amplification rate is negative. Mathematically it becomes impossible to solve the
system of linear equations at certain points in wavenumber space. These points
correspond to so-called mean flow resonances. Physically this means that there is a
strong interaction between the mean flow variation induced by the finite-amplitude
periodic disturbance and the time-dependent mean flow itself. The more subcritical
the flow is, the more resonance points exist (Davey & Nguyen 1971). Reynolds &
Potter (1967), to get around this difficulty, proposed considering the ‘false problem’
for subcritical flows where the time evolution of disturbances is neglected and only
steady equilibrium amplitudes are sought (assuming they exist). Mathematically this
approach does not lead to any difficulties when, for example, threshold amplitudes
for the subcritical plane Poiseuille flow are estimated. On other hand, the values
predicted are in poor agreement with experimental results (e.g. by Nishioka, Iida &
Ichikawa 1975). One of the reasons for the disagreement could be that this proposed
mathematically simple approach does not account for important physical mechanisms
which are present in real flows. Thus, in the present work, the authors prefer to use the
‘true problem’ approach where complete amplitude dynamics is considered. However,
in treating subcritical regimes, we stay away from the resonant points where the
present single mode analysis is not adequate. We note that the effects of resonances
could be analysed by using a system of the coupled Landau equations, but this is
beyond the scope of the present work.

Finally, we note that in Suslov & Paolucci (1995b) we carried out a linear stability
analysis of non-Boussinesq mixed convection flow in a vertical channel and determined
the bifurcation points, where transitions from parallel shear flows to periodic flows
occur, for a complete range of governing parameters. A number of physically distinct
instabilities not found in Boussinesq flows, as well as codimension-2 points, where
instability modes compete with each other, were identified. In the first part of the
present paper we augment the previous findings with the analysis of bifurcations and
quantitative estimations of equilibrium disturbance amplitudes in post-bifurcation
states while in the second part (Suslov & Paolucci 1999) we discuss mean flow
distributions and energetics corresponding to different modes of instability.

This part of the paper is organized as follows. First, the problem is formulated for
two physically distinct cases: fixed average longitudinal pressure gradient and fixed
average mass flux through the channel. Next, the expansion procedure is outlined
and properties of the resulting system of equations are discussed. Special attention is
paid to the treatment of the mean flow in a system with variable total mass. Finally,
the theory is applied to the non-Boussinesq mixed convection flow of air in a vertical
channel. Results are given for a wide range of Grashof and Reynolds numbers, and
temperature differences between the walls.
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2. Problem definition and governing equations
We consider a two-dimensional mixed convection flow between two vertical infinite

plates separated by a distance H . We limit ourselves to two-dimensional flows since
linear stability analysis (Suslov & Paolucci 1995b) shows that the mixed convection
flow becomes first unstable with respect to two-dimensional disturbances. The plates
are isothermal and maintained at the different temperatures T ∗h and T ∗c (<T ∗h ) respec-
tively (asterisks denote dimensional quantities). The channel is placed into a uniform
vertical gravitational field g. Since we are interested primarily in the case of large
temperature differences ∆T = T ∗h − T ∗c , the conventional Boussinesq approximation
is not applicable and we adopt the low-Mach-number approximation (Paolucci 1982)
for the Navier–Stokes equations in order to describe such a flow:
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Here ui = (u, v) and xi = (x, y) are velocity components and coordinates in the
horizontal and vertical directions respectively, and ni = (0,−1) is a unit vector in the
direction of gravity. The boundary conditions for the problem are

u = v = 0 and T = 1 ± ε at x = 0, 1. (5)

The above system is complemented by the equation of state and property variations

ρ = ρ(T ), cp = cp(T ), µ = µ(T ), k = k(T ), (6)

where ρ is the fluid density, µ is the dynamic viscosity, k is the thermal conductivity,
and cp is the specific heat at constant pressure, all dependent on the local temperature
T . The equations are non-dimensionalized by the use of channel width H , reference
temperature Tr = (T ∗h + T ∗c )/2, and viscous speed ur = µr/(ρrH). All properties
of the fluid are made dimensionless using their respective values at the reference
temperature. Note that since we assume that the channel is open to the atmosphere,
the total mass of the fluid in the channel in general can change with time. The inlet–
outlet conditions for the problem can be of two types: fixed average longitudinal
pressure gradient or fixed average mass flux through the channel. Let us assume that
away from the ends the flow is periodic in the longitudinal direction with wavelength
λ. Then, the dynamic pressure gradient averaged over the cross-section is

∂Π

∂y
=

∫ 1

0
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∂
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0
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)
=
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, (7)

where the overbar denotes integration over the channel width. Averaging over the
wavelength in the longitudinal direction gives

1

λ

∫ y0+λ/2

y0−λ/2
∂Π

∂y
dy ≡ Π̂ = const. (8)
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for the constant average pressure gradient case. Consequently, we can write

Π(x, y) = (const + Π̂y) +Π ′(x, y), (9)

where Π ′ is periodic in the y-direction. For the case of constant mass flux, condition
(8) is replaced by

1

λ

∫ y0+λ/2

y0−λ/2
ρv dy ≡ ṁ = const. (10)

The first of these two conditions generally leads to an unknown mass flux through the
channel when the disturbances modify the primary flow, while the second condition
leads to a variation of an unknown average vertical pressure gradient Π̂ associated
with the development of the secondary flow. The latter situation is somewhat similar
to the flow in a closed cavity where in that case ṁ ≡ 0 (see Suslov & Paolucci 1997),
although in the open channel the mass flux generally is not zero for non-Boussinesq
conditions.

The dimensionless parameters appearing in the equations are respectively the
Grashof number, the temperature difference, and the Prandtl number:

Gr =
ρ2
r βrg∆TH3

µ2
r

, ε =
1

2
βr∆T , P r =

µrcpr

kr
, (11)

where βr is the coefficient of thermal expansion evaluated at the reference temperature.
Another dimensionless parameter entering the system through the inflow–outflow
boundary conditions is the Reynolds number

Re =
ρrUrH

µr
. (12)

It is associated with the characteristic longitudinal velocity

Ur = − H2

12µr
Π̂∗, (13)

induced by the imposed pressure gradient Π̂∗ when the constant pressure gradient
case is considered. Alternatively the characteristic speed is given by

Ur =
ṁ∗

ρrH
− ρ∗v∗

ρrH
, (14)

when the mass flux is fixed. Definitions (13) and (14) result in identical values only
in the Boussinesq limit when the fluid density is constant. Thus, in non-Boussinesq
regimes when the fluid density varies across the channel the two definitions of Ur

lead to two different values of the Reynolds number for the same flow. This is also
discussed in Suslov & Paolucci (1995b).

We assume that the working fluid in our problem is air with a reference temperature
Tr = 300 K. The air obeys the ideal gas equation of state and the Sutherland laws for
the transport properties:

ρ =
1

T
, µ =

1 + Sµ

T + Sµ
T 3/2, k =

1 + Sk

T + Sk
T 3/2, (15)

where, according to White (1974), Sµ = S∗µ/Tr = 0.368, Sk = S∗k /Tr = 0.648. We also
take cp = 1 (see discussion in Suslov & Paolucci 1995a) and Pr = 0.71.
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3. Expansions and resulting equations
In our previous work (Suslov & Paolucci 1997) we developed an expansion pro-

cedure and multiple-timescale analysis for the system of equations describing a
Newtonian fluid with general properties. We assume that a small-amplitude periodic
disturbance is superimposed on the fully developed basic flow, which is steady and
does not depend on the longitudinal coordinate. We then look for the solution of
the problem (1)–(6) in the separable Fourier-decomposed form (truncated at the third
order in amplitude and where only the first two Fourier components are retained):

u(x, y, t) = u00(x) + ε2|A(t)|2u20(x)

+ {[εA(t)(u11(x) + ε2|A(t)|2u31(x))E + ε2A2(t)u22(x)E2] + c.c.}, (16)

v(x, y, t) = v00(x) + ε2|A(t)|2v20(x)

+ {[εA(t)(v11(x) + ε2|A(t)|2v31(x))E + ε2A2(t)v22(x)E2] + c.c.}, (17)

T (x, y, t) = T00(x) + ε2|A(t)|2T20(x)

+ {[εA(t)(T11(x) + ε2|A(t)|2T31(x))E + ε2A2(t)T22(x)E2] + c.c.}, (18)

Π(x, y, t) = Π00(x) + Π̂00y + ε2|A(t)|2(Π20(x) + Π̂20y)

+ {[εA(t)(Π11(x) + ε2|A(t)|2Π31(x))E + ε2A2(t)Π22(x)E2] + c.c.}, (19)

where E = exp (iαy) is a Fourier component of the disturbance corresponding to
wavenumber α, ε is a formal parameter introduced to facilitate the expansion pro-
cedure, and c.c. denotes the complex conjugate of the preceding expression in the
brackets. The first subscript corresponds to the order of amplitude entering the specific
term in the expansion while the second one denotes the order of the Fourier compo-
nent E. The terms Π̂m0y in the expansion for the dynamic pressure are necessary in
order to take into account the constant vertical pressure gradient required to maintain
a fixed average mass flux through the channel when disturbances are developing. In
the case of a fixed longitudinal pressure gradient Π̂00 = Π̂ and Π̂m0 = 0 for m > 0.
If we introduce the property vector g = (ρ, cp, µ, k)

T , it can be expanded similarly:

g = g00(x) + ε2|A|2g20(x) + {[εA(g11(x) + ε2|A|2g31(x))E + ε2A2g22(x)E2] + c.c.}, (20)

where the components of g00(x) = g(T00(x)) correspond to the fluid properties of the
basic flow,

g11 = g00TT11,

g20 = g00TT20 + g00TT |T11|2,
g22 = g00TT22 + 1

2
g00TTT

2
11,

g31 = g00TT31 + g00TT (T11T20 + T ∗11T22) + 1
2
g00TTTT11|T11|2,

 (21)

and subscript T denotes partial differentiation with respect to the basic flow tempera-
ture T00(x) of the corresponding property variation equation. Note that, as discussed
earlier, for air we take cp = 1. Although for generality we include the specific heat
in the expanded property vector, the actual results will be given for cp00 = 1 and
cp11 = cp20 = cp22 = cp31 = 0. Now we assume the existence of multiple timescales so
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that A(t) = A(t0, t2, . . .), where we take

t0 = t, t2 = ε2t, . . . (22)

so that
∂

∂t
=

∂

∂t0
+ ε2

∂

∂t2
+ · · · . (23)

Note that, as shown in Suslov & Paolucci (1997), the disturbance dynamics does not
depend on the first slow time t1 = εt.

Substituting expansions (16)–(19) into system (1)–(10) we obtain a set of equations
at each order εm and for each mode En. Since the equations for En and E−n are
complex conjugates of each other, we limit our consideration to the equations for
positive values of n. Note that w∗mn = wm−n.

3.1. Basic flow equations

At zeroth orders of ε and E we recover the basic flow equations

DΠ00 = 0, (24)

D(µ00 Dv00)− Gr

2ε
(ρ00 − 1)− Π̂00 = 0, (25)

D(k00 DT00) = 0, (26)

D(ρ00u00) = 0, (27)

u00 = v00 = 0, T00 = 1 ± ε at x = 0, 1, (28)

ρ00 =
1

T00

, cp00 = 1, µ00 =

(
1 + Sµ

T00 + Sµ

)
T

3/2
00 , k00 =

(
1 + Sk

T00 + Sk

)
T

3/2
00 , (29)

and {
Π̂00 = Π̂ = −12Re if the pressure gradient is fixed,

ρ00v00 = ṁ = Re if the mass flux is fixed,
(30)

where D ≡ d/dx. Note that integration of the x-momentum equation gives Π00 =
const. Detailed discussions of the basic flow solution and necessary conditions for
its existence are given in Chenoweth & Paolucci (1985, 1986) and Suslov & Paolucci
(1995b). Equations (24)–(30) are solved numerically using a Chebyshev collocation
spatial discretization (see Suslov & Paolucci 1995a, b for details and comparison with
the analytical solution). From here on, it is implicitly understood that all operators
which are obtained and discussed in subsequent sections are spatially discretized using
the same Chebyshev collocation method.

3.2. Linear disturbances

At order ε1E1 we obtain the linear disturbance equations, which can be given in
vector form as (

AAα − ∂A

∂t0
B

)
w11 = 0, (31)

where w11 = (u11, v11, T11, Π11)
T , u11 = v11 = T11 = 0 at x = 0, 1, and the elements of

Aα and B are given in Suslov & Paolucci (1997). This system of linear differential
equations has a solution of the form Aw11, where A = Ã(t0, t2, . . .) eiσ

I t0 , Ã satisfies the



Nonlinear stability of mixed convection flow. Part 1 69

linear equation

∂Ã

∂t0
= σRÃ, (32)

and σ = σR + iσI and w11 are respectively complex eigenvalues and eigenvectors of
the generalized eigenvalue problem

(Aα − σB)w11 = 0. (33)

Eigensystem (33) was solved for a wide range of ε, Gr, and Re in Suslov & Paolucci
(1995b). Here we normalize the eigenvectors in such a way that

max |v11| = max |v00|. (34)

For the purpose of further simplification we redefine E(y) = exp (iαy) → E(y, t0) =
exp [iα(y − c11t0)], where c11 = −σI/α is the linear disturbance wave speed, and
consequently, we then have Ã→ A.

The discrete system (33) is an algebraic eigenvalue problem. It is convenient to define
the corresponding matrix operator Lα,σ ≡ Aα−σB and its adjoint L†α,σ ≡ (A∗α−σ∗B∗)T
(stars denote complex conjugates) such that

L†α,σw
†
11 = 0, (35)

with w†11 = (u†11, v
†
11, T

†
11, Π

†
11)

T and u
†
11 = v

†
11 = T

†
11 = 0 at x = 0, 1, where w†11 is the

discrete adjoint eigenvector normalized in such a way that

〈w†11,Bw11〉 = 1. (36)

The inner product of two discrete N-component vectors a and b, denoted by angle
brackets, is defined as 〈a, b〉 ≡∑N

i=1 a
∗
i bi.

3.3. Mean flow correction

The order-ε2E0 terms contribute to the mean flow correction. The corresponding
system of equations can be written as(

|A|2A0 +
∂|A|2
∂t0

B

)
w20 = |A|2f20. (37)

The mean flow correction equation must be treated differently for the two physically
different situations corresponding to fixed average vertical pressure gradient and fixed
average mass flux. In the first case we have Π̂20 = 0, while in the second case we
generally have a non-zero pressure gradient Π̂20, the magnitude of which is implicitly
defined by the constant mass flux condition ṁ20 = 0, where

ṁ20 ≡ |A|2(ρ20v00 + ρ00v20 + 2Re {ρ11v
∗
11}), (38)

and Re {·} denotes the real part of the expression. Next, we note that since the channel
is open, the thermodynamic pressure inside the channel is in equilibrium with that
outside under low-Mach-number conditions (here we take the outside pressure to be
constant). This can be the case only if the total mass of the fluid inside is allowed to
vary as the disturbance develops. In fact, the amount of fluid which escapes or enters
the channel portion corresponding to the disturbance wavelength λ = 2π/α has to be

M(t)−M0 =

∫ y0+λ/2

y0−λ/2
[ρ(t, x, y)− ρ00(x)] dy = |A(t)|2λρ20(x) + O(|A(t)|3), (39)



70 S. A. Suslov and S. Paolucci

where M0 is the initial mass of the fluid in the same channel portion. Since the
disturbance density is a function of temperature only, and the temperature distribution
symmetry is broken under the non-Boussinesq conditions, the above expression is not
zero in general. The fluid can escape or enter the channel through the inlet or outlet
as well as in the spanwise directions if the flow between two plates is considered. This
is possible only if, during the transient period, ∂v20/∂y 6= 0 and/or the transverse
disturbance velocity w20 is not zero, while these terms must vanish when the quasi-
steady state is again reached. Thus, when disturbances develop, the flow in an open
channel cannot be represented by the expansions (16)–(20). On other hand, the weakly
nonlinear theory of a selected disturbance mode, by its very nature, only tells us about
the asymptotic long-time behaviour of the flow. The only long lasting effect of the
transient development which we must take into account is the permanent fluid mass
change in the flow domain. To accomplish this we introduce the spatially uniform
mass source term |A|2Sρ20 into the continuity equation so that at the order considered
it becomes

∂|A|2
∂t0

(ρ20 + Sρ20) + |A|2 D(ρ00u20 + 2Re {ρ11u
∗
11}) = 0. (40)

Integrating (40) over the channel width and taking into account the no-slip no-
penetration boundary conditions we obtain

∂|A|2
∂t0

(ρ20 + Sρ20) = 0 (41)

or

Sρ20 = −ρ20 =
M0 −M(t)

|A(t)|2λ + O(|A(t)|). (42)

In order to justify the spatial uniformity of the mass source term, we note that any
local temperature change leads to an instantaneous change in the local thermodynamic
pressure. This causes acoustic waves to propagate at a speed which is assumed to be
much greater than the characteristic speed of the fluid inside the channel. Indeed, in
the low-Mach-number approximation, the acoustic speed is infinite. Thus, the acoustic
disturbance reaches the inlet, outlet or spanwise openings instantly and causes a fast
fluid discharge or inflow such that the thermodynamic pressure inside the channel
equilibrates with the ambient one. Physically, the characteristic time necessary for
the acoustic disturbance to reach the end of the channel is L/a, where L is the
channel length and a =

√
γrRTr is the reference sound speed. On other hand, the

characteristic time for the disturbance development is (H/ur)/|σR|. Thus, in order to
justify the introduction of the spatially uniform mass source term, we need to have

L

a
� H/ur

|σR| (43)

or

|σR|η � 1

Ma
, (44)

where η = L/H is the channel aspect ratio, and Ma = ur/a is the reference Mach
number. The estimate for a fully developed flow for η ' 40 in a channel of width
H = 10 cm at Tr = 300 K gives |σR| � 5.7 × 102. For all computed results we find
|σR| � 102. Thus the approximation of a spatially uniform mass source is very good
for the flow considered.

The necessity of a spatially uniform mass source term when the low-Mach-number
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equations are used to describe the flow in an open system was first recognized in
Fröhlich, Laure & Peyret (1992), although there the source term was introduced only
in the continuity equation. Apparently that led to inconsistent momentum and energy
equations. If one proceeds consistently from the complete set of equations (1)–(3)
written in conservative form, then one needs to include additional convective terms
in the momentum and thermal energy equations. The resulting equations in operator
form are

L0, 2σRw20 = F 20, (45)

where w20 = (u20, v20, T20, Π20)
T , u20 = v20 = T20 = 0 at x = 0, 1, F 20 = f20− 2σRSρf20,

the expressions for f20 = (f(1)
20 , f

(2)
20 , f

(3)
20 , f

(4)
20 )T are given in the Appendix, and

f20 = (u00, v00, cp00T00, 1)T . The detailed solutions of (45) for a wide range of governing
parameters are presented in Part 2 (Suslov & Paolucci 1999).

Note that at this order, equation (45) is real since all terms involving the imaginary
parts drop out identically.

3.4. Periodic second-order terms

Collecting terms of order ε2E2, we obtain

L2α, 2σw22 = f22, (46)

where w22 = (u22, v22, T22, Π22)
T , u22 = v22 = T22 = 0 at x = 0, 1, and the components

of f22 = (f(1)
22 , f

(2)
22 , f

(3)
22 , f

(4)
22 )T are given in Suslov (1997).

Note that the equations for the mean flow correction (45) and the second harmonic
(46) can be easily solved for non-resonant conditions. A derivation of the resonance
conditions and detailed discussion of the resonances arising at second order in
amplitude are given in Suslov & Paolucci (1997).

3.5. Amplitude equation

When the disturbance amplitude is very small, it varies exponentially with time. In
order to assess the possible saturation when the amplitude becomes finite, we proceed
to examine the system, which results at order ε3E1 in

A|A|2(Lα, σ − 2σRB)w31 =
∂A

∂t2
Bw11 + A|A|2F 31, (47)

where w31 = (u31, v31, T31, Π31)
T , u31 = v31 = T31 = 0 at x = 0, 1, F 31 = f31− 2σRSρf31,

the components of the vector f31 = (f(1)
31 , f

(2)
31 , f

(3)
31 , f

(4)
31 )T are given in Suslov (1997),

and f31 = (u11, v11, cp00T11 + cp11T00, 0)T . Considering the inner product of (47) with

w†11 and using (36) we obtain

−2σRK̃0A|A|2 =
∂A

∂t2
+ K̃1A|A|2, (48)

where

K̃0 = 〈w†11,Bw31〉, K̃1 = 〈w†11,F 31〉. (49)

Since the left-hand side and the second term on the right-hand side of (48) have a
similar structure, subsequently we must have that

∂A

∂t2
= K1A|A|2, (50)
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where K1 is the Landau constant. If σR → 0, then the left-hand side of (48) vanishes
and thus we must have

K1 → −K̃1. (51)

This is the conventional solvability condition. Whenever the flow is considered away
from the marginal stability surface (σR 6= 0), the left-hand side of (48) does not vanish
and remains unknown. In this case, as shown in Suslov & Paolucci (1997), the proper
choice of the first Landau constant is determined by the orthogonality condition
〈w11,w31〉 = 0 and is given by

K1 = −2σR
〈w11, χ〉
〈w11,w11〉 , (52)

where χ = (uχ, vχ, tχ, Πχ)
T is the solution of the supplementary problem

(Lα, σ − 2σRB)χ = F 31 (53)

with boundary conditions uχ = vχ = Tχ = 0 at x = 0, 1.
Now reconstituting the time derivative of the amplitude using (23), (32) and (50)

we have
∂A

∂t
=
∂A

∂t0
+ ε2

∂A

∂t2
+ · · · = σRA+ ε2K1A|A|2 + · · · . (54)

Since ε is just a formal order parameter we redefine εA→ A and, neglecting the higher-
order terms in amplitude, we obtain the cubic Landau equation for the disturbance
amplitude A = A(t)

∂A

∂t
= σRA+K1A|A|2. (55)

The equilibrium amplitudes are Ae = 0 and |Ae|2 = a2
e = −σR/KR

1 > 0, where in polar
form A = a eiθ . It is easy to show that (55) provides a stable finite amplitude only for
the case of supercritical bifurcation (KR

1 < 0). In the case of subcritical bifurcation
(KR

1 > 0) at least a fifth-order Landau equation must be derived to predict a stable
equilibrium disturbance amplitude.

4. Results
All numerical results were obtained using 50 spectral modes (see Suslov & Paolucci

1995b for a description of the numerical approximation) and double-precision versions
of appropriate IMSL routines (IMSL 1989): NEQNF to solve for the basic flow,
GVCCG and GVLRG to solve the generalized eigenvalue problem for α > 0 and
α = 0 respectively, LSBRR to solve the mean flow correction equations, and LSACG
to solve equations for the second harmonic and for χ.

4.1. Bifurcations

The cubic Landau equation predicts an equilibrium disturbance amplitude if the
flow bifurcates supercritically. In the case of a subcritical bifurcation the Landau
equation provides some useful information about the disturbance dynamics while
the amplitude is sufficiently small, but in general cannot provide any information
about the saturation state unless a fifth-order term in amplitude is included and
its coefficient has the proper sign. Otherwise still higher orders would be required
to obtain the equilibrium state. Since the derivation and analysis of higher-order
Landau equations is beyond the scope of the present work, first we establish ranges
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of Reynolds number where the bifurcation is supercritical and thus the cubic Landau
equation can be used to estimate the equilibrium amplitude. In order to do this, we
look at the real part of the first Landau constant K1 evaluated for different values
of Gr, Re, and ε. Note that the actual value of K1 changes as we move away from
criticality and, strictly speaking, it has to be computed for each set of parameters
(Re, Gr, ε; α). On other hand, our investigation shows that the qualitative character of
the results presented below remains the same for substantial distances away form the
critical points (at least up to |δ| = 0.2, where δ ≡ P/Pc − 1, P represents a governing
parameter, typically Re or Gr, and the subscript c denotes the critical value).

The first Landau constant for Re = 0 (natural convection) is presented in figures
1(b) and 1(c) as a function of ε for Gr = Grc(ε) which is shown in figure 1(a). The
picture is quite similar to the one presented for convection in a closed cavity (see
Suslov & Paolucci 1997); that is, for the shear mode,KR

1 < 0 up to ε ≈ 0.536 predicting
the existence of a supercritical bifurcation. One can notice the slight difference in the
behaviour of the first Landau constant for the buoyant mode at higher values of ε:
its real part becomes positive for ε slightly below 0.6 while it is always negative for
the closed cavity in the parameter range considered. The major physical difference
between flows in a closed cavity and an open channel is that in the latter case the fluid
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Sen & Venkateswarlu Present results

(3/4)Re Method −KI
1/K

R
1 (σR/σI )× 103 −KI

1/K
R
1 (σR/σI )× 103

W 5.311
5200 4.01 5.188 4.00

RP 5.105

W 5.488
5400 2.52 5.421 2.50

RP 5.039

W 5.586
5500 1.81 5.550 1.79

RP 4.987

W 9.211
5625 0.80 10.965 0.78

RP 4.923

W 4.230
5700 0.47 4.274 0.46

RP 4.901

W 4.432
5710 0.41 4.456 0.40

RP 4.898

W 4.566
5720 0.35 4.585 0.33

RP 4.895

W 4.660
5730 0.29 4.675 0.27

RP 4.888

W 4.784
5750 0.16 4.794 0.14

RP 4.878

W 4.867
5774 0.01 4.881 −0.01

RP 4.868

Table 1. Comparison of selected results for subcritical Poiseuille flows (ε = 10−5, Gr = 0, α = 2.04)
with computations of Sen & Venkateswarlu (1983). W stands for Watson’s ‘true problem’ and RP
for Reynolds & Potter’s ‘false problem’ approaches.

can enter the channel or discharge from it as disturbances develop. Consequently,
removal of the global mass conservation constraint in the natural convection flow
in an open channel leads to the appearance of a subcritically bifurcating buoyant
instability mode in highly non-Boussinesq regimes. Note that in the Boussinesq limit
ε → 0, consistent with previous works (Mizushima & Gotoh 1983; Fujimura &
Mizushima 1987), KI

1 → 0 meaning that growing disturbances remain stationary (and
symmetric) when the temperature difference between the walls approaches zero. Note
also that in the Boussinesq limit the open channel results for fixed pressure gradient
and fixed mass flux cases are identical because of the symmetries of the basic flow and
disturbance distributions across the channel. Additionally, when Re = 0 the results
are identical to those obtained in the Boussinesq limit for natural convection flow in
a tall enclosure (Suslov & Paolucci 1997).

Values of the first Landau constant for forced convection flow (Poiseuille-type
flow, Gr = 0) are presented in figures 2(b) and 2(c) for different values of ε and
Re = Rec(ε) which is shown in figure 2(a). Note that the actual values of the Landau
constant depend on the chosen normalization (see (34)) and cannot be compared
directly to results of other authors. On other hand, the ratio KI

1/K
R
1 is invariant with

respect to any normalization. This ratio provides an accuracy check for our numerical
results. For the critical point (Grc, Rec, αc) ≈ (0, 7696.3, 2.0411) for Poiseuille flow in
the Boussinesq limit ε → 0 (here we take ε = 10−5) in the case of fixed pressure
gradient, we obtain KI

1/K
R
1 = −4.8416 which is reasonably close to the value of

−4.87 reported by Sen & Venkateswarlu (1983). Similar ratios given in the literature
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(Reynolds & Potter 1967; Davey, Hocking & Stewartson 1974; Fujimura 1989) for
the case of fixed mass flux range from −5.62 up to −5.58. To the authors’ knowledge,
the most accurate value obtained in this case is that of Fujimura (1989) who gives
KI

1/K
R
1 = −5.5832. Our value of KI

1/K
R
1 = −5.5838 is in very close agreement with

his result. Our results also compare favourably with those of Sen & Venkateswarlu
(1983) for subcritical Poiseuille flow as can be seen from table 1. Owing to a different
non-dimensionalization, our values for Re and α are larger than theirs by factors
of 4/3 and 2, respectively. Note that the results for the linear eigenvalue problem
presented in Sen & Venkateswarlu (1983) seem to be slightly inaccurate since the
value of the critical Reynolds number for the Poiseuille flow (Rec ≈ 5772 when the
non-dimensionalization is based on maximum speed and half of the channel width)
is apparently overestimated. As a consequence, our eigenvalue results (σR/σI in table
1) are presumably more accurate but differ slightly from the ones obtained by Sen &
Venkateswarlu.

The values obtained for the first Landau constant (−KI
1/K

R
1 ) generally lie between

similar values obtained by Sen & Venkateswarlu using Watson’s (1960) ‘true prob-
lem’ and Reynolds & Potter’s (1967) false problem techniques. Note that Watson’s
approach leads to a singular behaviour in the vicinity of the subcritical Reynolds
number value of 7533 (or 3Re/4 = 5650). Here a resonance between the mean flow
correction induced by the fundamental mode with α = 2.04 and the α = 0 distur-
bance mode occurs (see Suslov & Paolucci 1997), i.e. the condition 2σR|α= 2.04 = −π2,
is satisfied, where, as can be shown in the Boussinesq limit, σn = −(n2π2) and
σn = −(n2π2)/Pr, n = 1, 2, . . . are the eigenvalues of problem (33) associated with
the momentum and thermal energy equations, respectively, for α = 0 in case of fixed
pressure gradient. This type of resonance limits the applicability of the one-mode
analysis of Watson in subcritical regimes (see discussions in Davey & Nguyen 1971;
Herbert 1983; Sen & Venkateswarlu 1983). Although not identical, our reduction
scheme is similar to Watson’s method and has similar limitations (we also obtain a
singularity at the resonant point, see table 1).

Note that the analysis of subcritical flows when the average mass flux is fixed is
less restricted since the eigenvalues associated with the momentum equations in the
Boussinesq limit at α = 0 are −4(n2π2), n = 1, 2, . . . . Recently, the present authors
(Suslov & Paolucci 1997) noted that this difficulty can be avoided within a ‘true
problem’ approach by considering the interaction with the mean flow modes. This
would require derivation of a system of the coupled amplitude equations and the
corresponding coupled Landau series in the vicinity of the resonant point. Note that
the cubic Landau equation considered in the present paper is a low-order truncation
of the infinite-order Landau equation representing the temporal evolution of the
disturbance amplitude. It is accurate only if this amplitude is sufficiently small. As
discussed in Davey & Nguyen (1971) and Herbert (1983), when the infinite Landau
series is considered for a subcritical flow with σR < 0, it is practically impossible
to choose the governing parameters to avoid all higher-order mean flow resonances.
The single-mode infinite Landau series is inevitably divergent since at least one of its
coefficients becomes infinite (see figure 2c, d in Suslov & Paolucci 1997) as a reflection
of inherently multimode interaction during the decay of disturbances.

Thus, in general, the infinite system of coupled Landau equations is necessary
to describe adequately the physics of subcritical flows and to derive corresponding
convergent Landau series. On the other hand it is relatively easy to locate the lowest-
order resonant points (there exists only a finite number of them) and consider the
dynamics in the parameter ranges away from them. In this case the Landau equations
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would be necessary to define only the higher order Landau constants which are
multiplied by higher powers of the amplitude in the infinite coupled Landau series.
If the disturbance amplitude is sufficiently small, neglecting these higher-order terms
in the infinite Landau series (now convergent with finite coefficients obtained from
the mode coupling) would not lead to a large error. It can be shown then that the
cubic Landau equation obtained by the low-order truncation of the infinite-order
coupled Landau equations is identical to the one derived from a single-mode analysis
discussed in detail in this paper if the first mean flow resonance occurs at the order
|A|4 or higher (see also discussion on page 18 in Suslov & Paolucci 1997). Thus in
the present paper we will report results only for regions away from the lowest-order
resonances assuming that the disturbance amplitude is small enough so that the
derived cubic Landau equation is a reasonable approximation of the infinite-order
coupled Landau equations. This assumption has a simple physical interpretation.
While for the fundamental disturbance mode the decay rate is σR < 0, for the
disturbance resonating with the mean flow mode it is much faster, 2mσR, m > 1. In
order for this resonant interaction to have a noticeable effect, the initial amplitude
of the resonant mode must be large enough to persist for sufficiently long time. If
the amplitude is small, then the mode decays so quickly that the contribution due
to the resonance is negligible. The general indication that higher-order resonances
may not affect strongly the qualitative behaviour of the solution can be found in the
literature (see, for example, Glendinning 1984); however, further investigation of this
theoretical aspect is required.

We should note that on the surface, the ‘false problem’ approach suggested by
Reynolds & Potter circumvents the difficulties mentioned above and thus one is able
to estimate the Landau constant in subcritical regimes. The fact that no singularities
arise in this method is typically used as an argument for the superiority of this method
for subcritical flows (see, for example, Sen & Venkateswarlu 1983). On other hand, the
failure of Watson’s approach indicates the presence of a strong mean flow interaction
among the decaying disturbances, a mechanism which does not play an important
role in supercritical flows. By its nature, Reynolds & Potter’s approach does not take
this interaction into account. As shown in Suslov & Paolucci (1997), coexistence of
different disturbance modes, even in the case when their linear amplification (or decay)
rates are substantially different, could lead to a stable mixed state with equilibrium
amplitudes different from the ones predicted by the one-mode analysis. Moreover, the
results obtained by Sen & Venkateswarlu (1983) for Poiseuille flow using Reynolds &
Potter’s approach are not in a good agreement with the available experimental data
by Nishioka et al. (1975) (see the discussion in the next subsection). Thus we choose
to stay with the Watson-type reduction scheme, which from our point of view retains
more physical features of the original problem.

As seen from figure 2, the value of KR
1 remains positive and increases monotonically

with ε. Thus, the forced convection flow, although substantially stabilized according to
linear theory, always bifurcates subcritically, and, consequently, higher-order expan-
sions are necessary to give an adequate Landau model for such a flow. Note that lines
corresponding to the fixed average pressure gradient and to the fixed average mass
flux conditions in figure 2(b) are very close to each other and cannot be distinguished
in the figure. Figure 3 presents the results for mixed convection in the Boussinesq limit
ε→ 0 (for which ε = 0.005 is taken in our computations). Since in the Boussinesq limit
the results are symmetric with respect to the inversion of the sign of the Reynolds
number, only values for Re > 0 are presented. From figure 3(b) we see that the
bifurcation in the Boussinesq mixed convection flow remains supercritical along line



Nonlinear stability of mixed convection flow. Part 1 77

1

(×105)

Unstable

Stable

1050

Re

Grc

(a)

KR
1

1050

(b)
5

–10

105

(c)

–2

0

KI
1

0

–5

3

2

(×105)

0

(×105)

(×103)

2

31

(×103)

Re

1

3 2
2′

2

2′

(×103)

Re

2′

2

2

2′
3

1

4

Figure 3. (a) Critical Grashof number, and (b) real and (c) imaginary parts of the first Landau
constant as functions of Reynolds number for mixed convection flow in the Boussinesq limit (ε→ 0).
Solid and dashed lines in (b) and (c) represent cases with ∂Π/∂y = const and ṁ = const conditions,
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1–2 (point 1 represents natural convection) up to |Re| ≈ 1.12×104 (|Re| ≈ 1.17×104)
when the pressure gradient (mass flux) is kept fixed. For Poiseuille-type flows (line
3–2) the situation is the opposite: the bifurcation is subcritical for purely forced
convection (point 3) and changes to supercritical as the Grashof number increases.
From figure 4 we see that the symmetry is completely broken in the non-Boussinesq
regime at ε = 0.3. The bifurcation remains supercritical for negative and relatively
small positive Reynolds numbers and becomes subcritical for Re & 3400 (Re & 4900)
when the force associated with the applied pressure gradient opposes the buoyancy
in the region close to the cold wall, where the disturbance maximum is located (see
Suslov & Paolucci 1995b, 1997 for details). Thus the range of Reynolds numbers
where the cubic Landau equation models the complete dynamics of the disturbances
adequately becomes substantially smaller when fluid properties are allowed to vary
with temperature.

From figures 1–4 we notice that for fixed ε and Re the value of |KR
1 | obtained for

the case of fixed average pressure gradient is generally smaller than the corresponding
value for the case of fixed average mass flux. Since the magnitude of the equilibrium
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disturbance amplitude is inversely proportional to |KR
1 |1/2 we conclude that fixing the

pressure gradient is slightly less constraining than fixing the mass flux in the sense
that disturbances should be more easily observable in the former case. Otherwise,
the results for both cases are similar. Thus, in further discussions we limit ourselves
primarily to the fixed pressure gradient case. In figure 5 we show values of the
first Landau constant for the case of fixed pressure gradient and ε = 0.3 for a
much larger Reynolds number range. Note that the shear instability mode which
becomes dominant for Re . −5180 (see Suslov & Paolucci 1995b) always bifurcates
supercritically (line 3–4 in figure 5b). Since the corresponding value of |KR

1 | is several
orders of magnitude larger than the value for the shear mode which is dominant
when Re & −5180 (line 4′–5 in figure 5b), it is expected that the former mode
will have a much smaller amplitude in the vicinity of the codimension-2 point 4–4′
where the two modes become unstable simultaneously. No regions of supercritical
bifurcations are found for larger positive Reynolds numbers (in the vicinity of point
5) or for Poiseuille-type flows (lines 1–2 in figure 5) which become linearly unstable
for substantially higher values of |Re| owing to the fluid properties variations as
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discussed in Suslov & Paolucci (1995b). Note also that points 1 and 5 in figure 5
are equivalent to each other since they represent the same purely forced flow profiles
(Gr = 0), but with velocities in opposite directions.

In the strongly non-Boussinesq regime with ε = 0.6, the buoyant instability mode
discussed in Suslov & Paolucci (1995b) bifurcates supercritically for Re . −10. As
seen from figure 6, this range covers a substantial part of the region where, according
to linear theory, it dominates the shear-driven instability. The shear mode always
bifurcates subcritically as seen from figure 7. Note that lines similar to 2–3 in figure
3 and 1–2 in figure 5 which correspond to dominant forced convection are not pre-
sented in figures 6 and 7 since the linear instability in this case occurs at extremely
large Reynolds numbers (see figure 2 and Suslov & Paolucci 1995b). Summarizing, we
conclude that the non-Boussinesq effects have a strong influence on the stability char-
acteristics of the primary flow. Not only do the values of critical parameters predicted
by linear stability analysis deviate substantially from the Boussinesq predictions, but
also the character of bifurcation changes qualitatively as the temperature difference
between the walls increases.

4.2. Disturbance amplitudes

While the periodic disturbances discussed in Suslov & Paolucci (1995b) and mean
flow correction distributions (see Part 2) represent the spatial form of the flow fields
beyond the bifurcation, they do not provide any information on the actual size of
the disturbances or on how the disturbances develop. Thus in this section we analyse
the solutions for the disturbance amplitude satisfying the Landau equation (55). The
current reduction scheme enabled us to derive the Landau equation which governs the
dynamics of the disturbance amplitude away from the bifurcation point. Typically, in
weakly nonlinear theory, when the relative distance from the critical point is taken
as a small expansion parameter, the constants entering the Landau equation are
evaluated at the critical point. Then the equilibrium amplitude for a disturbance wave
is estimated as∣∣∣∣ σR(δ)

KR
1 (δ = 0)

∣∣∣∣1/2 , where δ = (Re/Rec − 1)
∣∣∣
ε, Gr fixed

or δ = (Gr/Grc − 1)
∣∣∣
ε, Re fixed
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Figure 8. Bifurcation diagrams for disturbance waves for ∂Π/∂y = const and (a) Poiseuille-type
flows (ε, Re, Gr) = (0.005, 7700, 0) and (ε, Re, Gr) = (0.3, 25960, 0), and codimension-2 points
at (b) (ε, Re, Gr) = (0.005, 12850, 442730), (c) (ε, Re, Gr) = (0.3,−5150, 524640), and (d)
(ε, Re, Gr) = (0.6,−860, 95032). Dotted lines represent the approximate bifurcation diagrams ob-
tained using the value of the first Landau constant at the corresponding critical points (δ = 0).

for Poiseuille-type flows and for natural or mixed convection flows, respectively. In
this approach one implicitly assumes that the Landau constant does not change with
δ. From figure 8 we see that this is not the case in general. Thus, a conclusion we draw
in analysing the bifurcation diagrams in figure 8 is that one should be careful when
trying to sum the higher-order terms in the Stuart–Landau series in order to predict
an equilibrium amplitude away from the bifurcation point as done, for instance, in
Sen & Venkateswarlu (1983). The correction due to the higher-order terms in the
Stuart–Landau series in some cases can be of the same order as the error introduced
when the variation of the Landau constants with δ is neglected.

The bifurcation diagrams presented in figure 8 show the equilibrium amplitudes
when the bifurcations are supercritical, and the threshold amplitudes which limit
the basin of attraction of the undisturbed parallel flow when the bifurcations are
subcritical, both for periodic wave disturbances with wavenumbers corresponding
to those of maximum linear growth rate. Values of critical parameters were found
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in our earlier work on linear stability of mixed convection flow (Suslov & Paolucci
1995b). From figure 8(a) we conclude that Poiseuille-type flows become much more
sensitive to the size of disturbances when the temperature difference is increased
since the threshold amplitude is substantially decreased. The threshold amplitude
corresponding to ε = 0.3 is difficult to obtain for larger values of |δ| because a mean
flow resonance (Suslov & Paolucci 1997) occurs just beyond the curve truncation
point in the figure. The situation is even worse for the mixed convection flow in the
vicinity of the codimension-2 point in the Boussinesq limit (as discussed in Suslov &
Paolucci 1995b), two different shear instability modes with α = 1.6815 and α = 2.1074
compete here) which is shown in figure 8(b): the influence of the mean flow resonance
extends very close to the bifurcation point such that only the approximate values
of the threshold amplitudes based on the Landau constant estimated for δ = 0 are
presented for the subcritically bifurcating short-wavelength instability mode. Note
that although the values of δ are negative, the long-wavelength instability bifurcates
supercritically (KR

1 < 0 as can be seen from figure 3b). The negative values of δ arise
since the flow is destabilized when the value of the Grashof number is decreased
below Grc (down from point 2 and below line 2–3 in figure 3a). Figure 8(b) indicates
that the equilibrium long-wavelength disturbance amplitude remains smaller than the
threshold amplitude for the shorter wave. This fact suggests that the longer wave
should represent a stable state in the vicinity of the codimension-2 point in the
Boussinesq limit, although mode coupling must be taken into account to complete
the investigation of pattern selection (see Suslov & Paolucci 1997). From figure 8(c)
we see that at ε = 0.3 two shear modes (see Suslov & Paolucci 1995b) bifurcate
supercritically in the vicinity of the codimension-2 point (our computations show
that KR < 0 at points 4 and 4′ in figure 5b). Again the long shear instability wave
(α = 0.0800) is expected to play a dominant role since it is characterized by a much
larger equilibrium amplitude than that for the short wave (α = 1.1828). However, this
can only be confirmed by examining the coupled equations near the codimension-2
point, which is beyond the scope of the present work. The short-wave disturbance
equilibrium amplitude is smaller since the dissipation is more intense for smaller
cells. From figure 8(d) we see that in the strongly non-Boussinesq regime at ε = 0.6,
the interaction is between the shear (α = 0.6285) and buoyant (α = 0.1000) modes
(see Suslov & Paolucci 1995b). For the downward flow the former is subcritical and
the latter is supercritical (see figures 6b and 7b), while for the upward flow both
bifurcations are subcritical. The individual bifurcation diagrams shown in figure 8(d)
for the codimension-2 point correspond to the downward flow case. It is expected
that for Grashof numbers smaller than the critical value, sufficiently large initial
disturbances will lead to the shear type of instability. For larger Grashof numbers,
the basic flow could initially be destabilized by buoyant disturbances which could then
excite the shear instability so that finally it becomes dominant or leads to some mixed
state depending on the specific choice of parameters. The codimension-2 analysis can
be performed by deriving the coupled Landau equations as in Suslov & Paolucci
(1997). This has not been done at this point.

Evaluations of equilibrium disturbance amplitudes are necessary in order to quanti-
tatively predict such important characteristics of the disturbed flow as the average heat
transfer rate or the average mass flux. Thus, it is instructive to compare predictions
based on the proposed reduction scheme with experimental results. Unfortunately,
experiments in the vicinity of criticality, where weakly nonlinear theory is most ac-
curate, are generally very difficult to perform owing to very small and, consequently,
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hard to detect deviations from the undisturbed state. One experiment where special
care was taken to control accurately the disturbance amplitude was performed by
Nishioka et al. (1975) in the subcritical Poiseuille flow. Although this relatively sim-
ple flow has been studied extensively for decades, to date attempts to predict the
threshold amplitude using weakly nonlinear theory (see Sen & Venkateswarlu 1983;
Zhou 1982) have led to substantially overestimated values in comparison with the
experimental data. It is argued in Sen & Venkateswarlu (1983) and Zhou (1982) that
this difference is due to three-dimensional effects which are not taken into account by
the weakly nonlinear theories which they discuss (see also the discussion in Hocking
et al. 1972) rather than due to the deficiency of the reduction schemes used to model
the flow. On other hand, the disturbances introduced into the flow in the experiment
by Nishioka et al. (1975) were generated by a ribbon vibrating across the complete
channel width. This means that the initial excitation was essentially two-dimensional.
Very small disturbance variations in the spanwise direction just repeated the form of
imperfections of the primary flow which are attributed to minor warping of the top
wall when machining access slits. Moreover, according to the scenario described in
Nishioka & Asai (1984), the first step in transition is the amplification of a primary
two-dimensional disturbance wave when the ribbon oscillation amplitude exceeds a
certain threshold value. Only after this does the secondary bifurcation leading to
three-dimensional distortions of the primary disturbance wave occur. This is also in
accordance with the experiments by Karnitz, Potter & Smith (1974) who observed
that in subcritical Poiseuille flow the sinusoidal disturbance wave with a frequency
close to the one predicted by two-dimensional linear stability theory preceded a tur-
bulent burst with an essentially flat front. Thus we believe that these experimental
observations make the two-dimensional consideration of the initial stage of transition
in plane Poiseuille flow and, in particular, determination of a threshold disturbance
amplitude for two-dimensional disturbance waves reasonable.

In figure 9(a) we sketch the experimental threshold r.m.s. disturbance magnitude as
a function of the non-dimensional excitation frequency f(α) = |σI (α)|/(3Re) given by
Nishioka et al. (1975) for Reynolds number 5000 if non-dimensionalization is made
using the maximum flow speed and the channel half-width (corresponding to our
Reynolds number which is larger by a factor 4/3). Symbols denote our predictions
for threshold amplitudes |A| = (−σR/KR

1 )1/2 obtained for plane disturbance waves
at the corresponding frequencies. Note that according to Nishioka et al. (1975) the
degree of basic flow three-dimensionality in their experiment was less than 6%
in the worst case for Reynolds number 7500 which is beyond the linear stability
boundary. For smaller Reynolds numbers the spanwise variation was substantially
weaker. Thus comparison of their experimental results for the threshold amplitudes
with our predictions based on a two-dimensional model is reasonable. Our results
are in considerably better quantitative agreement with the experiment than those
reported by Sen & Venkateswarlu (1983), and the form of the dependence of |A(f)|,
for 0.26 . f . 0.34, resembles the one given by Zhou (1982) in his figure 1(a)
(two-dimensional disturbances as well were considered in both Sen & Venkateswarlu
1983 and Zhou 1982). On other hand, our results have some scatter. The scatter can
be directly attributed to the influence of multiple resonances which exist between the
mean flow correction and the α = 0 harmonics (Suslov & Paolucci 1997) and which
are not accounted for in the present analysis. The resonant frequencies are easily
found at the intersections of lines σR = −n2π2/2, n = 1, 2, . . . with the σR(f) curve
for the leading eigenvalue shown in figure 9(b). The agreement between the present
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Figure 9. (a) Disturbance threshold amplitude curve from Nishioka et al. (1975); symbols denote
values predicted by the present analysis. (b) Plane wave linear decay rate σR as a function of
non-dimensional frequency for the Poiseuille flow at Re = 4/3 × 5000; intersections of σR =
−n2π2/2 (n = 1, 2, . . .) lines and the σR(f) curve represent resonance points.

theoretical results and the experimental results in resonance-free frequency intervals
is satisfactory, and thus we expect that our predictions for supercritical (σR(α) > 0)
flows, where no mean flow resonances exist, are sufficiently accurate.

Note also that the theory developed in Suslov & Paolucci (1997) enables one
to model the evolution of a disturbance wave not necessarily corresponding to the
wavenumber α (or frequency f) of the maximum linear amplification rate σR . In other
words disturbance quantities can be computed and expansions can be made based
on eigenfunctions of the linearized problem whose spatial period (and frequency
of oscillation) differ from the critical ones. This enables us to consider a forced
system where the frequency of the disturbances is prescribed by external means.
Our calculations of KR

1 for Poiseuille flow at Re = 4/3 × 5000 (not presented here)
show that it becomes negative for f . 0.22 and f & 0.40, which means that plane
wave disturbances at these frequencies must decay no matter how big their initial
amplitudes are. Thus, consistent with figure 10 in Sen & Venkateswarlu (1983), the
predicted threshold amplitude increases rapidly outside the interval 0.22 . f . 0.40,
and no threshold amplitudes are computed for frequencies beyond this range as
shown in figure 9a). The decrease in the experimental threshold amplitude outside
this frequency range can be attributed to the development of localized rather than
periodic disturbances. Turbulent spots in the laminar flow were observed in the
experiment by Nishioka et al. (1975) in this frequency range, but they cannot be
modelled within a discrete wave approach and require consideration of spatially
modulated disturbance waves and wave packets.
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5. Summary
We have developed a weakly nonlinear theory for the analysis of flows in open

domains where the total mass of fluid might not be conserved. The theory is applied
to the non-Boussinesq mixed convection flow of air in an open vertical channel with
differentially heated walls. It is shown that constant mass flux and constant pressure
gradient formulations result in distinct problems, which lead to qualitatively similar
but quantitatively different results. The cubic Landau equation is shown to model
the evolution of the disturbance amplitude for a wide range of governing parameters.
Based on this equation the regions of supercritical and subcritical bifurcations are
identified. Comparison of the present theory with those developed by Watson (1960)
and Reynolds & Potter (1967) demonstrates the advantage of the current approach
which is capable of providing better quantitative predictions for super- and subcritical
flow regimes further from the marginally stable state.

Appendix
Functions entering the right-hand side of (45):

f
(1)
20 = − 8

3
Re {D(µ11 Du∗11)}+ 2α Im { 2

3
D(µ11v

∗
11)− ρ00u11v

∗
11 + ρ11u

∗
11v00}

+ ρ00 D|u11|2 + 2Re {σρ∗11u11},
f

(2)
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∗
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∗
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f
(3)
20 = 2Re
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f
(4)
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∗
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where for the variable properties used

cp11 = cp20 = cp22 = 0, ρ00TT ≡ ∂2ρ00

∂T 2
00

= 2
ρ00

T 2
00

,

µ00TT ≡ ∂2µ00

∂T 2
00

= −1 + Sµ

4

T 2
00 + 6SµT00 − 3S2

µ√
T00(T00 + Sµ)3

,

k00TT ≡ ∂2k00

∂T 2
00
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4

T 2
00 + 6SkT00 − 3S2

k√
T00(T00 + Sk)3

.
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